MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2014 Balkan MO Shortlist
N5
BMO 2014 SL N5
BMO 2014 SL N5
Source: Balkan MO 2014 Shortlist
October 10, 2016
number theory
Problem Statement
N
5
\boxed{N5}
N
5
ā
Let
a
,
b
,
c
,
p
,
q
,
r
a,b,c,p,q,r
a
,
b
,
c
,
p
,
q
,
r
be positive integers such that
a
p
+
b
q
+
c
r
=
a
q
+
b
r
+
c
p
=
a
r
+
b
p
+
c
q
.
a^p+b^q+c^r=a^q+b^r+c^p=a^r+b^p+c^q.
a
p
+
b
q
+
c
r
=
a
q
+
b
r
+
c
p
=
a
r
+
b
p
+
c
q
.
Prove that
a
=
b
=
c
a=b=c
a
=
b
=
c
or
p
=
q
=
r
.
p=q=r.
p
=
q
=
r
.
Back to Problems
View on AoPS