MathDB
2018 Individual #20

Source:

January 13, 2023
2018 Individual

Problem Statement

Point OO is selected in equilateral ABC\triangle ABC such that the sum of the distances from OO to each side of ABCABC is 1515. Compute the area of ABCABC.
https://cdn.artofproblemsolving.com/attachments/4/0/dd573985a7c98f23fd05d11e95c4b908eaa895.png
<spanclass=latexbold>(A)</span>153<spanclass=latexbold>(B)</span>303<spanclass=latexbold>(C)</span>503<spanclass=latexbold>(D)</span>753<spanclass=latexbold>(E)</span>2253<span class='latex-bold'>(A) </span> 15\sqrt3\qquad<span class='latex-bold'>(B) </span> 30\sqrt3\qquad<span class='latex-bold'>(C) </span> 50\sqrt3\qquad<span class='latex-bold'>(D) </span> 75\sqrt3\qquad<span class='latex-bold'>(E) </span> 225\sqrt3