MathDB
Number of ways to create a dice

Source: 0

April 23, 2009

Problem Statement

If two faces of a dice have a common edge, the two faces are called adjacent faces. In how many ways can we construct a dice with six faces such that any two consecutive numbers lie on two adjacent faces?
<spanclass=latexbold>(A)</span> 10<spanclass=latexbold>(B)</span> 14<spanclass=latexbold>(C)</span> 18<spanclass=latexbold>(D)</span> 56<spanclass=latexbold>(E)</span> None<span class='latex-bold'>(A)</span>\ 10 \qquad<span class='latex-bold'>(B)</span>\ 14 \qquad<span class='latex-bold'>(C)</span>\ 18 \qquad<span class='latex-bold'>(D)</span>\ 56 \qquad<span class='latex-bold'>(E)</span>\ \text{None}