MathDB
determinant AB=0

Source: 1987 Greece MO Grade XII p2

September 6, 2024
linear algebramatrixdeterminant

Problem Statement

Let A=(αij)A=(\alpha_{ij}) be a mxnm\,x\,n matric and B=(βkl)B=(\beta_{kl}) be a nxmn\,x\, m matric with m>nm>n . Prove that D(AB)=0D(A\cdot B)=0.