MathDB
Inequality in Moldova TST 2017, D1, P1

Source: Moldova TST 2017, Day 1, Problem 1

March 6, 2017
algebra

Problem Statement

Let the sequence (an)n1(a_{n})_{n\geqslant 1} be defined as: an=An+21An+32An+43An+54543,a_{n}=\sqrt{A_{n+2}^{1}\sqrt[3]{A_{n+3}^{2}\sqrt[4]{A_{n+4}^{3}\sqrt[5]{A_{n+5}^{4}}}}}, where AmkA_{m}^{k} are defined by Amk=(mk)k!.A_{m}^{k}=\binom{m}{k}\cdot k!. Prove that an<119120n+73.a_{n}<\frac{119}{120}\cdot n+\frac{7}{3}.