MathDB
Romania District Olympiad 2007 - Grade XI

Source:

April 10, 2011
linear algebralinear algebra unsolved

Problem Statement

Let AMn(R)A\in \mathcal{M}_n(\mathbb{R}^*). If A tA=InA\cdot\ ^t A=I_n, prove that:
a)Tr(A)n|\text{Tr}(A)|\le n;
b)If nn is odd, then det(A2In)=0\det(A^2-I_n)=0.