MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2007 District Olympiad
2
Romania District Olympiad 2007 - Grade XI
Romania District Olympiad 2007 - Grade XI
Source:
April 10, 2011
linear algebra
linear algebra unsolved
Problem Statement
Let
A
∈
M
n
(
R
∗
)
A\in \mathcal{M}_n(\mathbb{R}^*)
A
∈
M
n
(
R
∗
)
. If
A
⋅
t
A
=
I
n
A\cdot\ ^t A=I_n
A
⋅
t
A
=
I
n
, prove that:a)
∣
Tr
(
A
)
∣
≤
n
|\text{Tr}(A)|\le n
∣
Tr
(
A
)
∣
≤
n
;b)If
n
n
n
is odd, then
det
(
A
2
−
I
n
)
=
0
\det(A^2-I_n)=0
det
(
A
2
−
I
n
)
=
0
.
Back to Problems
View on AoPS