MathDB
Putnam 1969 B5

Source: Putnam 1969

March 31, 2022
PutnamSequences

Problem Statement

Let a1<a2<a_1 <a_2 < \ldots be an increasing sequence of positive integers. Let the series i=11ai\sum_{i=1}^{\infty} \frac{1}{a_i } be convergent. For any real number xx, let k(x)k(x) be the number of the aia_i which do not exceed xx. Show that limxk(x)x=0.\lim_{x\to \infty} \frac{k(x)}{x}=0.