MathDB
0171 inequalities 1st edition Round 7 p1

Source:

May 9, 2021
inequalities1st edition

Problem Statement

Prove that for every positive numbers x,y,zx, y, z the following inequality holds: 4x2+4x(y+z)+(yz)2<4y2+4y(z+x)+(zx)2+4z2+4z(x+y)+(xy)2.\sqrt{4x^2 + 4x(y + z) + (y - z)^2} <\sqrt{4y^2 + 4y(z + x) + (z - x)^2}+\sqrt{4z^2 + 4z(x + y) + (x - y)^2}.