MathDB
Minimum Length of Broken Line

Source: 2014 AMC 12A #20

February 5, 2014
geometrygeometric transformationreflectiontrigonometryinequalitiesAsymptotetrig identities

Problem Statement

In BAC\triangle BAC, BAC=40\angle BAC=40^\circ, AB=10AB=10, and AC=6AC=6. Points DD and EE lie on AB\overline{AB} and AC\overline{AC} respectively. What is the minimum possible value of BE+DE+CDBE+DE+CD?
<spanclass=latexbold>(A)</span>63+3<spanclass=latexbold>(B)</span>272<spanclass=latexbold>(C)</span>83<spanclass=latexbold>(D)</span>14<spanclass=latexbold>(E)</span>33+9<span class='latex-bold'>(A) </span>6\sqrt 3+3\qquad <span class='latex-bold'>(B) </span>\dfrac{27}2\qquad <span class='latex-bold'>(C) </span>8\sqrt 3\qquad <span class='latex-bold'>(D) </span>14\qquad <span class='latex-bold'>(E) </span>3\sqrt 3+9\qquad