MathDB
BMT 2020 Fall - Geometry 5

Source:

December 30, 2021
geometry

Problem Statement

Let A1=(0,0)A_1 = (0, 0), B1=(1,0)B_1 = (1, 0), C1=(1,1)C_1 = (1, 1), D1=(0,1)D_1 = (0, 1). For all i>1i > 1, we recursively define Ai=12020(Ai1+2019Bi1),Bi=12020(Bi1+2019Ci1)A_i =\frac{1}{2020} (A_{i-1} + 2019B_{i-1}),B_i =\frac{1}{2020} (B_{i-1} + 2019C_{i-1}) Ci=12020(Ci1+2019Di1),Di=12020(Di1+2019Ai1)C_i =\frac{1}{2020} (C_{i-1} + 2019D_{i-1}), D_i =\frac{1}{2020} (D_{i-1} + 2019A_{i-1}) where all operations are done coordinate-wise. https://cdn.artofproblemsolving.com/attachments/8/7/9b6161656ed2bc70510286dc8cb75cc5bde6c8.png If [AiBiCiDi][A_iB_iC_iD_i] denotes the area of AiBiCiDiA_iB_iC_iD_i, there are positive integers a,ba, b, and cc such that i=1[AiBiCiDi]=a2bc\sum_{i=1}^{\infty}[A_iB_iC_iD_i] = \frac{a^2b}{c}, where bb is square-free and cc is as small as possible. Compute the value of a+b+ca + b + c