Let A1=(0,0), B1=(1,0), C1=(1,1), D1=(0,1). For all i>1, we recursively define
Ai=20201(Ai−1+2019Bi−1),Bi=20201(Bi−1+2019Ci−1)Ci=20201(Ci−1+2019Di−1),Di=20201(Di−1+2019Ai−1)
where all operations are done coordinate-wise.
https://cdn.artofproblemsolving.com/attachments/8/7/9b6161656ed2bc70510286dc8cb75cc5bde6c8.png
If [AiBiCiDi] denotes the area of AiBiCiDi, there are positive integers a,b, and c such that ∑i=1∞[AiBiCiDi]=ca2b, where b is square-free and c is as small as possible. Compute the value of a+b+c