MathDB
Romania Junior TST 2021 Day 3 P3

Source:

June 7, 2021
number theorySetsmaximum valueromaniaRomanian TST

Problem Statement

Let p,qp,q be positive integers. For any a,bRa,b\in\mathbb{R} define the sets P(a)={an=a + n  1p:nN} and Q(b)={bn=b + n  1q:nN}.P(a)=\bigg\{a_n=a \ + \ n \ \cdot \ \frac{1}{p} : n\in\mathbb{N}\bigg\}\text{ and }Q(b)=\bigg\{b_n=b \ + \ n \ \cdot \ \frac{1}{q} : n\in\mathbb{N}\bigg\}. The distance between P(a)P(a) and Q(b)Q(b) is the minimum value of xy|x-y| as xP(a),yQ(b)x\in P(a), y\in Q(b). Find the maximum value of the distance between P(a)P(a) and Q(b)Q(b) as a,bRa,b\in\mathbb{R}.