MathDB
phi gcd >= gcd phi

Source: Indonesia IMO 2010 TST, Stage 1, Test 4, Problem 4

November 12, 2009
number theorygreatest common divisorinequalitiesnumber theory proposed

Problem Statement

Prove that for all integers m m and n n, the inequality \dfrac{\phi(\gcd(2^m \plus{} 1,2^n \plus{} 1))}{\gcd(\phi(2^m \plus{} 1),\phi(2^n \plus{} 1))} \ge \dfrac{2\gcd(m,n)}{2^{\gcd(m,n)}} holds. Nanang Susyanto, Jogjakarta