MathDB
Integral problem using periodicity

Source: RomNO 2003, grade xii, p.3

August 27, 2019
functioncalculusintegration

Problem Statement

Let be a continuous function f:RR f:\mathbb{R}\longrightarrow\mathbb{R} that has the property that xf(x)0xf(t)dt, xf(x)\ge \int_0^x f(t)dt , for all real numbers x. x. Prove that
a) the mapping x1x0xf(t)dt x\mapsto \frac{1}{x}\int_0^x f(t) dt is nondecreasing on the restrictions R<0 \mathbb{R}_{<0 } and R>0. \mathbb{R}_{>0 } .
b) if xx+1f(t)dt=x1xf(t)dt, \int_x^{x+1} f(t)dt=\int_{x-1}^x f(t)dt , for any real number x, x, then f f is constant.
Mihai Piticari