Suppose a,b, and c are positive integers with a \plus{} b \plus{} c \equal{} 2006, and a!b!c! \equal{} m\cdot10^n, where m and n are integers and m is not divisible by 10. What is the smallest possible value of n?
<spanclass=′latex−bold′>(A)</span>489<spanclass=′latex−bold′>(B)</span>492<spanclass=′latex−bold′>(C)</span>495<spanclass=′latex−bold′>(D)</span>498<spanclass=′latex−bold′>(E)</span>501