MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
USAMO
1998 USAMO
3
n Tans
n Tans
Source: USAMO 1998
October 9, 2005
trigonometry
function
inequalities
inequalities proposed
n-variable inequality
Hi
Problem Statement
Let
a
0
,
a
1
,
⋯
,
a
n
a_0,a_1,\cdots ,a_n
a
0
,
a
1
,
⋯
,
a
n
be numbers from the interval
(
0
,
π
/
2
)
(0,\pi/2)
(
0
,
π
/2
)
such that
tan
(
a
0
−
π
4
)
+
tan
(
a
1
−
π
4
)
+
⋯
+
tan
(
a
n
−
π
4
)
≥
n
−
1.
\tan (a_0-\frac{\pi}{4})+ \tan (a_1-\frac{\pi}{4})+\cdots +\tan (a_n-\frac{\pi}{4})\geq n-1.
tan
(
a
0
−
4
π
)
+
tan
(
a
1
−
4
π
)
+
⋯
+
tan
(
a
n
−
4
π
)
≥
n
−
1.
Prove that
tan
a
0
tan
a
1
⋯
tan
a
n
≥
n
n
+
1
.
\tan a_0\tan a_1 \cdots \tan a_n\geq n^{n+1}.
tan
a
0
tan
a
1
⋯
tan
a
n
≥
n
n
+
1
.
Back to Problems
View on AoPS