MathDB
n Tans

Source: USAMO 1998

October 9, 2005
trigonometryfunctioninequalitiesinequalities proposedn-variable inequalityHi

Problem Statement

Let a0,a1,,ana_0,a_1,\cdots ,a_n be numbers from the interval (0,π/2)(0,\pi/2) such that tan(a0π4)+tan(a1π4)++tan(anπ4)n1. \tan (a_0-\frac{\pi}{4})+ \tan (a_1-\frac{\pi}{4})+\cdots +\tan (a_n-\frac{\pi}{4})\geq n-1. Prove that tana0tana1tanannn+1. \tan a_0\tan a_1 \cdots \tan a_n\geq n^{n+1}.