MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Soros Olympiad in Mathematics
IV Soros Olympiad 1997 - 98 (Russia)
10.7
6\sqrt2 sinx tgx - 2\sqrt2 tgx +3sinx -1=0 (IV Soros Olympiad 1997-98 R3 10.7)
6\sqrt2 sinx tgx - 2\sqrt2 tgx +3sinx -1=0 (IV Soros Olympiad 1997-98 R3 10.7)
Source:
June 2, 2024
algebra
trigonometry
Problem Statement
How many different solutions on the interval
[
0
,
π
]
[0, \pi]
[
0
,
π
]
does the equation
6
2
sin
x
⋅
t
g
x
−
2
2
t
g
x
+
3
sin
x
−
1
=
0
6\sqrt2 \sin x \cdot tgx - 2\sqrt2 tgx +3\sin x -1=0
6
2
sin
x
⋅
t
gx
−
2
2
t
gx
+
3
sin
x
−
1
=
0
have?
Back to Problems
View on AoPS