MathDB
0533 inequalities 5th edition Round 3 p3

Source:

May 6, 2021
inequalities5th editionalgebra

Problem Statement

Let x1,x2,...xnx_1, x_2,... x_n be positive numbers such that S=x1+x2+...+xn=1x1+...+1xnS = x_1+x_2+...+x_n =\frac{1}{x_1}+...+\frac{1}{x_n} Prove that i=1n1n1+xii=1n11+Sxi\sum_{i=1}^{n} \frac{1}{n - 1 + x_i} \ge \sum_{i=1}^{n} \frac{1}{1+S - x_i}