MathDB
Monotony of a rational cyclic function

Source: Romanian NO 2011, grade x, p. 3

October 3, 2019
functionalgebracyclic function

Problem Statement

Let be three positive real numbers a,b,c. a,b,c. Show that the function f:RR, f:\mathbb{R}\longrightarrow\mathbb{R} , f(x)=axbx+cx+bxax+cx+cxax+bx, f(x)=\frac{a^x}{b^x+c^x} +\frac{b^x}{a^x+c^x} +\frac{c^x}{a^x+b^x} , is nondecresing on the interval [0,) \left[ 0,\infty \right) and nonincreasing on the interval (,0]. \left( -\infty ,0 \right] .