MathDB
Chord length of sqrt{a}

Source:

November 21, 2005
geometrytrapezoidquadraticsAMCAIMEcircumcirclePythagorean Theorem

Problem Statement

Two parallel chords in a circle have lengths 1010 and 1414, and the distance between them is 66. The chord parallel to these chords and midway between them is of length a\sqrt{a} where aa is
[asy] // note: diagram deliberately not to scale -- azjps void htick(pair A, pair B, real r){ D(A--B); D(A-(r,0)--A+(r,0)); D(B-(r,0)--B+(r,0)); } size(120); pathpen = linewidth(0.7); pointpen = black+linewidth(3); real min = -0.6, step = 0.5; pair[] A, B; D(unitcircle); for(int i = 0; i < 3; ++i) { A.push(intersectionpoints((-9,min+i*step)--(9,min+i*step),unitcircle)[0]); B.push(intersectionpoints((-9,min+i*step)--(9,min+i*step),unitcircle)[1]); D(D(A)--D(B)); } MP("10",(A[0]+B[0])/2,N); MP("\sqrt{a}",(A[1]+B[1])/2,N); MP("14",(A[2]+B[2])/2,N); htick((B[1].x+0.1,B[0].y),(B[1].x+0.1,B[2].y),0.06); MP("6",(B[1].x+0.1,B[0].y/2+B[2].y/2),E);[/asy]
<spanclass=latexbold>(A)</span> 144<spanclass=latexbold>(B)</span> 156<spanclass=latexbold>(C)</span> 168<spanclass=latexbold>(D)</span> 176<spanclass=latexbold>(E)</span> 184<span class='latex-bold'>(A)</span>\ 144 \qquad <span class='latex-bold'>(B)</span>\ 156 \qquad <span class='latex-bold'>(C)</span>\ 168 \qquad <span class='latex-bold'>(D)</span>\ 176 \qquad <span class='latex-bold'>(E)</span>\ 184