MathDB
2005 Calculus #4: Smooth function - derivative at 0

Source:

April 29, 2013
calculusfunctionderivativereal analysis

Problem Statement

Let f:RR f : \mathbf {R} \to \mathbf {R} be a smooth function such that f(x)2=f(x)f(x) f'(x)^2 = f(x) f''(x) for all xx. Suppose f(0)=1f(0)=1 and f(4)(0)=9f^{(4)} (0) = 9. Find all possible values of f(0)f'(0).