MathDB
Problems
Contests
International Contests
Austrian-Polish
1978 Austrian-Polish Competition
3
Tangent inequality
Tangent inequality
Source: Austrian-Polish 1978, Problem 3
July 5, 2015
trigonometry
inequalities
Problem Statement
Prove that
tan
1
∘
⋅
tan
2
∘
⋅
⋯
⋅
tan
4
4
∘
44
<
2
−
1
<
tan
1
∘
+
tan
2
∘
+
⋯
+
tan
4
4
∘
44
.
\sqrt[44]{\tan 1^\circ\cdot \tan 2^\circ\cdot \dots\cdot \tan 44^\circ}<\sqrt 2-1<\frac{\tan 1^\circ+ \tan 2^\circ+\dots+\tan 44^\circ}{44}.
44
tan
1
∘
⋅
tan
2
∘
⋅
⋯
⋅
tan
4
4
∘
<
2
−
1
<
44
tan
1
∘
+
tan
2
∘
+
⋯
+
tan
4
4
∘
.
Back to Problems
View on AoPS