MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN A Problems
36
A 36
A 36
Source:
May 25, 2007
floor function
Divisibility Theory
Problem Statement
Let
n
n
n
and
q
q
q
be integers with
n
≥
5
n \ge 5
n
≥
5
,
2
≤
q
≤
n
2 \le q \le n
2
≤
q
≤
n
. Prove that
q
−
1
q-1
q
−
1
divides
⌊
(
n
−
1
)
!
q
⌋
\left\lfloor \frac{(n-1)!}{q}\right\rfloor
⌊
q
(
n
−
1
)!
⌋
.
Back to Problems
View on AoPS