MathDB
Proving that a fraction is a national number

Source:

January 3, 2011
number theory unsolvednumber theory

Problem Statement

For a positive integer nn, let 6(n)6^{(n)} be the natural number whose decimal representation consists of nn digits 66. Let us define, for all natural numbers mm, kk with 1km1 \leq k \leq m [mk]=6(m)6(m1)6(mk+1)6(1)6(2)6(k).\left[\begin{array}{ccc}m\\ k\end{array}\right] =\frac{ 6^{(m)} 6^{(m-1)}\cdots 6^{(m-k+1)}}{6^{(1)} 6^{(2)}\cdots 6^{(k)}} . Prove that for all m,km, k, [mk] \left[\begin{array}{ccc}m\\ k\end{array}\right] is a natural number whose decimal representation consists of exactly k(m+k1)1k(m + k - 1) - 1 digits.