Let f(x)=sin4x+4cos2x−cos4x+4sin2x. An equivalent form of f(x) is <spanclass=′latex−bold′>(A)</span>1−2sinx<spanclass=′latex−bold′>(B)</span>−1+2cosx<spanclass=′latex−bold′>(C)</span>cos2x−sin2x<spanclass=′latex−bold′>(D)</span>cosx−sinx<spanclass=′latex−bold′>(E)</span>cos2x