MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania - Local Contests
Nicolae Coculescu
2007 Nicolae Coculescu
4
Nicolae Coculescu 2007
Nicolae Coculescu 2007
Source:
February 24, 2008
linear algebra
linear algebra unsolved
Problem Statement
Let
n
∈
N
∗
n\in{N^*}
n
∈
N
∗
,
n
≥
3
n\ge{3}
n
≥
3
and
a
1
,
a
2
,
.
.
.
,
a
n
∈
R
∗
a_1,a_2,...,a_n\in{R^*}
a
1
,
a
2
,
...
,
a
n
∈
R
∗
, so that
∣
a
i
∣
≠
∣
a
j
∣
|a_i|\neq{|a_j|}
∣
a
i
∣
=
∣
a
j
∣
, for every
i
,
j
∈
{
1
,
2
,
.
.
.
,
n
}
,
i
≠
j
i,j\in{\{1,2,...,n\}}, i\neq{j}
i
,
j
∈
{
1
,
2
,
...
,
n
}
,
i
=
j
. Find
p
∈
S
n
p\in{S_n}
p
∈
S
n
with the property: a_ia_j < \equal{} a_{p(i)}a_{p(j)}, for every
i
,
j
∈
{
1
,
2
,
.
.
.
.
n
}
i,j\in{\{1,2,....n\}}
i
,
j
∈
{
1
,
2
,
....
n
}
,
i
≠
j
i\neq{j}
i
=
j
(Teodor Radu)
Back to Problems
View on AoPS