MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AIME Problems
2000 AIME Problems
15
Trig Summation
Trig Summation
Source: AIME 2 2000 #15
December 9, 2005
trigonometry
induction
AMC
AIME
MATHCOUNTS
function
Problem Statement
Find the least positive integer
n
n
n
such that
1
sin
4
5
∘
sin
4
6
∘
+
1
sin
4
7
∘
sin
4
8
∘
+
⋯
+
1
sin
13
3
∘
sin
13
4
∘
=
1
sin
n
∘
.
\frac 1{\sin 45^\circ\sin 46^\circ}+\frac 1{\sin 47^\circ\sin 48^\circ}+\cdots+\frac 1{\sin 133^\circ\sin 134^\circ}=\frac 1{\sin n^\circ}.
sin
4
5
∘
sin
4
6
∘
1
+
sin
4
7
∘
sin
4
8
∘
1
+
⋯
+
sin
13
3
∘
sin
13
4
∘
1
=
sin
n
∘
1
.
Back to Problems
View on AoPS