MathDB
Greater than weighted mean ==> greater than mean

Source: 4th QEDMO, created by myself

March 9, 2007
algebra proposedalgebra

Problem Statement

Let (a1, a2, a3, ...)\left(a_{1},\ a_{2},\ a_{3},\ ...\right) be a sequence of reals such that an(n1)an1+(n2)an2+...+2a2+1a1(n1)+(n2)+...+2+1a_{n}\geq\frac{\left(n-1\right)a_{n-1}+\left(n-2\right)a_{n-2}+...+2a_{2}+1a_{1}}{\left(n-1\right)+\left(n-2\right)+...+2+1} for every integer n2n\geq 2. Prove that anan1+an2+...+a2+a1n1a_{n}\geq\frac{a_{n-1}+a_{n-2}+...+a_{2}+a_{1}}{n-1} for every integer n2n\geq 2. Generalization. Let (b1, b2, b3, ...)\left(b_{1},\ b_{2},\ b_{3},\ ...\right) be a monotonically increasing sequence of positive reals, and let (a1, a2, a3, ...)\left(a_{1},\ a_{2},\ a_{3},\ ...\right) be a sequence of reals such that anbn1an1+bn2an2+...+b2a2+b1a1bn1+bn2+...+b2+b1a_{n}\geq\frac{b_{n-1}a_{n-1}+b_{n-2}a_{n-2}+...+b_{2}a_{2}+b_{1}a_{1}}{b_{n-1}+b_{n-2}+...+b_{2}+b_{1}} for every integer n2n\geq 2. Prove that anan1+an2+...+a2+a1n1a_{n}\geq\frac{a_{n-1}+a_{n-2}+...+a_{2}+a_{1}}{n-1} for every integer n2n\geq 2. darij