MathDB
Combinatorial geometry with circle interiors

Source: Romania JBMO TST 2024 Day 4 P4

July 31, 2024
combinatoricscombinatorial geometry

Problem Statement

Let n2n\geqslant 2 be an integer and AA{} a set of nn points in the plane. Find all integers 1kn11\leqslant k\leqslant n-1 with the following property: any two circles C1C_1 and C2C_2 in the plane such that AInt(C1)AInt(C2)A\cap\text{Int}(C_1)\neq A\cap\text{Int}(C_2) and AInt(C1)=AInt(C2)=k|A\cap\text{Int}(C_1)|=|A\cap\text{Int}(C_2)|=k have at least one common point.
Cristi Săvescu