MathDB
Just a simple square root inequality

Source: Brazil EGMO TST1 2023 #3

January 29, 2024
inequalitiesJensensquare rootssquare root inequality

Problem Statement

Let a1,a2,,ana_1, a_2, \ldots , a_n be positive real numbers such that a1+a2++an=1a_1 + a_2 + \cdots + a_n = 1. Prove that a11a1++an1an1n1(a1++an).\dfrac{a_1}{\sqrt{1-a_1}}+\cdots+\dfrac{a_n}{\sqrt{1-a_n}} \geq \dfrac{1}{\sqrt{n-1}}(\sqrt{a_1}+\cdots+\sqrt{a_n}).