MathDB
A 51

Source:

May 25, 2007
Divisibility Theory

Problem Statement

Let a,b,ca,b,c and dd be odd integers such that 0<a<b<c<d0<a<b<c<d and ad=bcad=bc. Prove that if a+d=2ka+d=2^{k} and b+c=2mb+c=2^{m} for some integers kk and mm, then a=1a=1.