Log Sum
Source:
January 2, 2009
logarithms
Problem Statement
For all integers greater than , define a_n \equal{} \frac {1}{\log_n 2002}. Let b \equal{} a_2 \plus{} a_3 \plus{} a_4 \plus{} a_5 and c \equal{} a_{10} \plus{} a_{11} \plus{} a_{12} \plus{} a_{13} \plus{} a_{14}. Then b \minus{} c equals
(A)\ \minus{} 2 \qquad (B)\ \minus{} 1 \qquad (C)\ \frac {1}{2002} \qquad (D)\ \frac {1}{1001} \qquad (E)\ \frac {1}{2}