MathDB
Integer function

Source: Serbia TST 2017 #3

May 21, 2017
functionalgebra

Problem Statement

A function f:NNf:\mathbb{N} \rightarrow \mathbb{N} is called nice if fa(b)=f(a+b1)f^a(b)=f(a+b-1), where fa(b)f^a(b) denotes aa times applied function ff. Let gg be a nice function, and an integer AA exists such that g(A+2018)=g(A)+1g(A+2018)=g(A)+1. a) Prove that g(n+20172017)=g(n)g(n+2017^{2017})=g(n) for all nA+2n \geq A+2. b) If g(A+1)g(A+1+20172017)g(A+1) \neq g(A+1+2017^{2017}) find g(n)g(n) for n<An <A.