A function f:N→N is called nice if fa(b)=f(a+b−1), where fa(b) denotes a times applied function f.
Let g be a nice function, and an integer A exists such that g(A+2018)=g(A)+1.
a) Prove that g(n+20172017)=g(n) for all n≥A+2.
b) If g(A+1)=g(A+1+20172017) find g(n) for n<A.