MathDB
Inequality with some condition

Source: Kazakhstan National Olympiad 2023/ Problem 3

March 21, 2023
inequalities

Problem Statement

a,b,ca,b,c are positive real numbers such that max{a(b+c)a2+bc,b(c+a)b2+ca,c(a+b)c2+ab}52\max\{\frac{a(b+c)}{a^2+bc},\frac{b(c+a)}{b^2+ca},\frac{c(a+b)}{c^2+ab}\}\le \frac{5}{2}. Prove inequality a(b+c)a2+bc+b(c+a)b2+ca+c(a+b)c2+ab3\frac{a(b+c)}{a^2+bc}+\frac{b(c+a)}{b^2+ca}+\frac{c(a+b)}{c^2+ab}\le 3