MathDB
Compute $\sum_{n=0}^{3^k} \frac{1}{b_n}$

Source: Moldova TST 1998

August 8, 2023

Problem Statement

Let kk{} be a positive integer. For every positive integer n3kn \leq 3^k, denote bnb_n the greatest power of 33 that divides C3knC_{3^k}^n. Compute n=13k11bn\sum_{n=1}^{3^k-1} \frac{1}{b_n}.