MathDB
Re: Romania District Olympiad 2001 - Grade X

Source:

March 16, 2011
inductionarithmetic sequencealgebra proposedalgebra

Problem Statement

Let (an)n1(a_n)_{n\ge 1} be a sequence of real numbers such that
a1(n1)+a2(n2)++an(nn)=2n1an, ()nNa_1\binom{n}{1}+a_2\binom{n}{2}+\ldots+a_n\binom{n}{n}=2^{n-1}a_n,\ (\forall)n\in \mathbb{N}^*
Prove that (an)n1(a_n)_{n\ge 1} is an arithmetical progression.
Lucian Dragomir