MathDB
Two similar looking inequalities with the constraint abc=1

Source: Cyprus 2022 Junior TST-3 Problem 3

March 26, 2022
inequalitiesAM-GMCauchy-Schwarz inequality

Problem Statement

If a,b,ca,b,c are positive real numbers with abc=1abc=1, prove that (a) 2(aba+b+bcb+c+cac+a)9ab+bc+ca2\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right) \geqslant \frac{9}{ab+bc+ca} (b)2(aba+b+bcb+c+cac+a)9a2b+b2c+c2a2\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right) \geqslant \frac{9}{a^2 b+b^2 c+c^2 a}