MathDB
Additive combinatorics (re Cauchy-Davenport)

Source: Romania TST 3 2010, Problem 4

August 25, 2012
floor functioncombinatorics proposedcombinatoricsCauchy-Davenport theorem

Problem Statement

Let XX and YY be two finite subsets of the half-open interval [0,1)[0, 1) such that 0XY0 \in X \cap Y and x+y=1x + y = 1 for no xXx \in X and no yYy \in Y. Prove that the set {x+yx+y:xX and yY}\{x + y - \lfloor x + y \rfloor : x \in X \textrm{ and } y \in Y\} has at least X+Y1|X| + |Y| - 1 elements.
***