MathDB
Arithmetic mean

Source: APMO 2002

April 8, 2006
floor functioninductionfunctionlogarithmsinequalitiescalculusderivative

Problem Statement

Let a1,a2,a3,,ana_1,a_2,a_3,\ldots,a_n be a sequence of non-negative integers, where nn is a positive integer. Let An=a1+a2++ann . A_n={a_1+a_2+\cdots+a_n\over n}\ . Prove that a1!a2!an!(An!)n a_1!a_2!\ldots a_n!\ge\left(\lfloor A_n\rfloor !\right)^n where An\lfloor A_n\rfloor is the greatest integer less than or equal to AnA_n, and a!=1×2××aa!=1\times 2\times\cdots\times a for a1a\ge 1(and 0!=10!=1). When does equality hold?