MathDB
Problems
Contests
National and Regional Contests
USA Contests
Withdrawn USA Contests
Online Math Open Problems
2015 Online Math Open Problems
18
2015-2016 Fall OMO #18
2015-2016 Fall OMO #18
Source:
November 18, 2015
Online Math Open
Problem Statement
Given an integer
n
n
n
, an integer
1
≤
a
≤
n
1 \le a \le n
1
≤
a
≤
n
is called
n
n
n
-well if
⌊
n
⌊
n
/
a
⌋
⌋
=
a
.
\left\lfloor\frac{n}{\left\lfloor n/a \right\rfloor}\right\rfloor = a.
⌊
⌊
n
/
a
⌋
n
⌋
=
a
.
Let
f
(
n
)
f(n)
f
(
n
)
be the number of
n
n
n
-well numbers, for each integer
n
≥
1
n \ge 1
n
≥
1
. Compute
f
(
1
)
+
f
(
2
)
+
…
+
f
(
9999
)
f(1) + f(2) + \ldots + f(9999)
f
(
1
)
+
f
(
2
)
+
…
+
f
(
9999
)
.Proposed by Ashwin Sah
Back to Problems
View on AoPS