MathDB
Area of a Convex Hexagon

Source:

January 11, 2009
geometryrectangle

Problem Statement

The equiangular convex hexagon ABCDEF ABCDEF has AB \equal{} 1, BC \equal{} 4, CD \equal{} 2, and DE \equal{} 4. The area of the hexagon is <spanclass=latexbold>(A)</span> 1523<spanclass=latexbold>(B)</span> 93<spanclass=latexbold>(C)</span> 16<spanclass=latexbold>(D)</span> 3943<spanclass=latexbold>(E)</span> 4343 <span class='latex-bold'>(A)</span>\ \frac{15}{2}\sqrt{3}\qquad <span class='latex-bold'>(B)</span>\ 9\sqrt{3}\qquad <span class='latex-bold'>(C)</span>\ 16\qquad <span class='latex-bold'>(D)</span>\ \frac{39}{4}\sqrt{3}\qquad <span class='latex-bold'>(E)</span>\ \frac{43}{4}\sqrt{3}