MathDB
Squares in triangles

Source:

March 16, 2006
geometryincenterratio

Problem Statement

Squares S1S_1 and S2S_2 are inscribed in right triangle ABCABC, as shown in the figures below. Find AC+CBAC + CB if area(S1)=441(S_1) = 441 and area(S2)=440(S_2) = 440.
[asy] size(250); real a=15, b=5; real x=a*b/(a+b), y=a/((a^2+b^2)/(a*b)+1); pair A=(0,b), B=(a,0), C=origin, X=(y,0), Y=(0, y*b/a), Z=foot(Y, A, B), W=foot(X, A, B); draw(A--B--C--cycle); draw(W--X--Y--Z); draw(shift(-(a+b), 0)*(A--B--C--cycle^^(x,0)--(x,x)--(0,x))); pair point=incenter(A,B,C); label("AA", A, dir(point--A)); label("BB", B, dir(point--B)); label("CC", C, dir(point--C)); label("AA", (A.x-a-b,A.y), dir(point--A)); label("BB", (B.x-a-b,B.y), dir(point--B)); label("CC", (C.x-a-b,C.y), dir(point--C)); label("S1S_1", (x/2-a-b, x/2)); label("S2S_2", intersectionpoint(W--Y, X--Z)); dot(A^^B^^C^^(-a-b,0)^^(-b,0)^^(-a-b,b));[/asy]