MathDB
IMC 1996 Problem 7

Source: IMC 1996

March 4, 2021
functionreal analysisConvergence

Problem Statement

Prove that if f:[0,1][0,1]f:[0,1]\rightarrow[0,1] is a continuous function, then the sequence of iterates xn+1=f(xn)x_{n+1}=f(x_{n}) converges if and only if limn(xn+1xn)=0\lim_{n\to \infty}(x_{n+1}-x_{n})=0