MathDB
Prove that the function is concave

Source:

September 20, 2010
functionalgebraconcavemeanIMO Shortlist

Problem Statement

A function f:IRf : I \to \mathbb R, defined on an interval II, is called concave if f(θx+(1θ)y)θf(x)+(1θ)f(y)f(\theta x + (1 - \theta)y) \geq \theta f(x) + (1 - \theta)f(y) for all x,yIx, y \in I and 0θ10 \leq \theta \leq 1. Assume that the functions f1,,fnf_1, \ldots , f_n, having all nonnegative values, are concave. Prove that the function (f1f2fn)1/n(f_1f_2 \cdots f_n)^{1/n} is concave.