MathDB
Romanian District Olympiad 2000, Grade IX, Problem 1

Source:

September 24, 2018
inequalitiesromaniaInequalityalgebra

Problem Statement

a) Show that n22x+3x3++nxnn1x, \frac{n}{2}\ge \frac{2\sqrt{x} +3\sqrt[3]{x}+\cdots +n\sqrt[n]{x}}{n-1} -x, for all non-negative reals x x and integers n2. n\ge 2.
b) If x,y,z(0,), x,y,z\in (0,\infty ) , then prove the inequality cycx(2x+y+z)2+43/16 \sum_{\text{cyc}} \frac{x}{(2x+y+z)^2+4} \le 3/16