MathDB
Fixed point

Source: Moscow Olympiad 2018, Grade 9, P4

July 13, 2018
geometrycircumcircle

Problem Statement

ABCDABCD is convex and AB∦CD,BC∦DAAB\not \parallel CD,BC \not \parallel DA. PP is variable point on ADAD. Circumcircles of ABP\triangle ABP and CDP\triangle CDP intersects at QQ. Prove, that all lines PQPQ goes through fixed point.