MathDB
2015 HMIC #5: (cyclotomic) Diophantine

Source:

April 26, 2015
HMICcyclotomic fieldroots of unitydiophantine

Problem Statement

Let ω=e2πi/5\omega = e^{2\pi i /5} be a primitive fifth root of unity. Prove that there do not exist integers a,b,c,d,ka, b, c, d, k with k>1k > 1 such that (a+bω+cω2+dω3)k=1+ω.(a + b \omega + c \omega^2 + d \omega^3)^{k}=1+\omega. Carl Lian