MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
JBMO TST - Moldova
2006 Junior Balkan Team Selection Tests - Moldova
3
Poblem 3 (1st jbmo tst), moldova
Poblem 3 (1st jbmo tst), moldova
Source: 1st JBMO TST, Moldova
March 31, 2006
geometry proposed
geometry
Problem Statement
The convex polygon
A
1
A
2
…
A
2006
A_{1}A_{2}\ldots A_{2006}
A
1
A
2
…
A
2006
has opposite sides parallel
(
A
1
A
2
∣
∣
A
1004
A
1005
,
…
)
(A_{1}A_{2}||A_{1004}A_{1005}, \ldots)
(
A
1
A
2
∣∣
A
1004
A
1005
,
…
)
. Prove that the diagonals
A
1
A
1004
,
A
2
A
1005
,
…
A
1003
A
2006
A_{1}A_{1004}, A_{2}A_{1005}, \ldots A_{1003}A_{2006}
A
1
A
1004
,
A
2
A
1005
,
…
A
1003
A
2006
are concurrent if and only if opposite sides are equal.
Back to Problems
View on AoPS