MathDB
Harmonic series revisited

Source: 2021 SEEMOUS, P1

July 23, 2021

Problem Statement

Let f:[0,1]Rf: [0, 1] \to \mathbb{R} be a continuous strictly increasing function such that limx0+f(x)x=1. \lim_{x \to 0^+} \frac{f(x)}{x}=1. (a) Prove that the sequence (xn)n1(x_n)_{n \ge 1} defined by xn=f(11)+f(12)++f(1n)1nf(1x)dx x_n=f \left(\frac{1}{1} \right)+f \left(\frac{1}{2} \right)+\cdots+f \left(\frac{1}{n} \right)-\int_1^n f \left(\frac{1}{x} \right) \mathrm dx is convergent. (b) Find the limit of the sequence (yn)n1(y_n)_{n \ge 1} defined by yn=f(1n+1)+f(1n+2)++f(12021n). y_n=f \left(\frac{1}{n+1} \right)+f \left(\frac{1}{n+2} \right)+\cdots+f \left(\frac{1}{2021n} \right).