MathDB
parallelepiped cuts of a wooden beam

Source: Dutch NMO 2001 p3

September 21, 2019
3D geometrygeometry

Problem Statement

A wooden beam EFGHEFGH ABCDABCD is with three cuts in 88 smaller ones sawn beams. Each cut is parallel to one of the three pair of opposit sides. Each pair of saw cuts is shown perpendicular to each other. The smaller bars at the corners A,C,FA, C, F and HH have a capacity of 9,12,8,249, 12, 8, 24 respectively.(The proportions in the picture are not correct!!). Calculate content of the entire bar.
[asy] unitsize (0.5 cm);
pair A, B, C, D, E, F, G, H; pair x, y, z;
x = (1,0.5); y = (-0.8,0.8); z = (0,1);
B = (0,0); C = 5*x; A = 3*y; F = 4*z; E = A + F; G = C + F; H = A + C + F;
fill(y--3*y--(3*y + z)--(y + z)--cycle, gray(0.8)); fill(2*x--5*x--(5*x + z)--(2*x + z)--cycle, gray(0.8)); fill((y + z)--(y + 4*z)--(y + 4*z + 2*x)--(4*z + 2*x)--(2*x + z)--z--cycle, gray(0.8)); fill((2*x + y + 4*z)--(2*x + 3*y + 4*z)--(5*x + 3*y + 4*z)--(5*x + y + 4*z)--cycle, gray(0.8)); draw(B--C--G--H--E--A--cycle); draw(B--F); draw(E--F); draw(G--F); draw(y--(y + 4*z)--(y + 4*z + 5*x)); draw(2*x--(2*x + 4*z)--(2*x + 4*z + 3*y)); draw((3*y + z)--z--(5*x + z));
label("AA", A, SW); label("BB", B, S); label("CC", C, SE); label("EE", E, NW); label("FF", F, SE); label("GG", G, NE); label("HH", H, N); [/asy]