MathDB
n positive reals

Source: 16-th Hungary-Israel Binational Mathematical Competition 2003

March 30, 2007
inequalitiesinequalities proposed

Problem Statement

If x1,x2,...,xnx_{1}, x_{2}, . . . , x_{n} are positive numbers, prove the inequality x13x12+x1x2+x22+x23x22+x2x3+x32+...+xn3xn2+xnx1+x12x1+x2+...+xn3\frac{x_{1}^{3}}{x_{1}^{2}+x_{1}x_{2}+x_{2}^{2}}+\frac{x_{2}^{3}}{x_{2}^{2}+x_{2}x_{3}+x_{3}^{2}}+...+\frac{x_{n}^{3}}{x_{n}^{2}+x_{n}x_{1}+x_{1}^{2}}\geq\frac{x_{1}+x_{2}+...+x_{n}}{3}.